f154k.cn-国产91综合网,久久久综合视频,五月天中文字幕一区二区,久久久久久久精

熱門搜索:掃描電鏡,臺式掃描電鏡,制樣設備CP離子研磨儀,原位樣品桿,可視化顆粒檢測,高分辨臺式顯微 CT,粉末原子層沉積系統,納米氣溶膠沉積系統
技術文章 / article 您的位置:網站首頁 > 技術文章 > 磷酸鋁 ALD 破解高鎳鋰電正極材料結構疲勞難題

磷酸鋁 ALD 破解高鎳鋰電正極材料結構疲勞難題

發布時間: 2025-05-09  點擊次數: 2641次

在新能源汽車和儲能系統領域,鋰離子電池正極材料的性能突破始終是行業關注焦點。近期,英國華威大學及法拉第研究所發表于《PRX Energy》的一項突破性研究成果揭示了 PALD(粉末原子層沉積)技術在抑制高鎳正極材料結構疲勞方面的潛力,為高電壓鋰電體系的商業化應用鋪平了道路。該工作使用的 ALD 包覆工藝由 Forge Nano 提供。

 

Part.1  高鎳正極的"阿喀琉斯之踵"

 

鎳含量超過60%的層狀氧化物正極(如LiNi0.8Mn0.1Co0.1O2,簡稱 NMC811)因其高比容量和能量密度成為下一代鋰電的核心材料。然而,當工作電壓提升至 4.2V 以上時,表面氧流失引發的結構坍塌成為制約其循環穩定性的關鍵瓶頸。

 

在實現高容量所需的高電壓下操作時(超過 4.2 V),這些高鎳正極容易通過晶間開裂和表面重構而發生化學機械降解。前者是由于在循環過程中產生大量晶體應變,導致開裂;后者是脫鋰引起的表面不穩定性的結果,這種不穩定性源于表面 O 損耗,導致表面結構從層狀轉變為更致密的立方尖晶石或巖鹽結構。

 

因此,有必要實施材料改性策略,例如使用保護性表面涂層,以延長這些正極的電化學循環壽命。Particle ALD 是在高比表面積粉體材料表面進行ALD 涂層工藝的技術,近年來隨著 Forge Nano推出的產線兼容設備而備受關注,利用該技術可對不穩定的高鎳三元材料進行表面改性,從而達到原子級水平的界面調控。

 

 

圖1. Forge Nano 推出的從工藝開發到小試,中試及量產級粉末ALD 設備方案。

 

Part.2  研究方法與實驗設計

 

材料與電池制備

 

  • 正極材料:Forge Nano 公司提供的 ALD 磷酸鋁涂層 NMC811(ALD-NMC811)與未涂層NMC811(UC-NMC811)。

  • 電池組裝:工業級中試線軟包電池(面積容量3.4 mAh/cm²),采用石墨負極,電解液為 1M LiPF?(EC:EMC=3:7+1% VC)。

 

實驗方法

 

  • 電化學測試:在 3.0–4.4V 電壓范圍內進行 100 次非對稱循環(0.5C 充電,1C 放電),并分析容量衰減、電壓滯后及阻抗增長。

  • 原位 X 射線衍射:監測循環過程中 NMC811 晶格參數(a、c)演變及結構疲勞特征。

    003峰:對應層狀結構沿c軸方向的晶格參數(層間距),對脫鋰程度敏感。

    101峰:反映a-b面晶格參數,表征面內收縮/膨脹。

  • 電化學阻抗譜:評估表面層電阻(SEI)和電荷轉移電阻。

 

Part.3  主要研究結果

 

ALD 涂層對電化學性能的影響

 

01容量保持率

 

ALD-NMC811電池在100次循環后容量衰減(C/10:~10%;1C:~13%)顯著低于 UC-NMC811 (C/10:~13%;1C:~31%),表明 ALD 涂層在高倍率下更有效抑制容量損失。

 

 

圖2.兩塊UC-NMC811(未包覆)電池和兩塊ALD-NMC811電池的平均(a)放電容量和(b)歸一化放電容量。(c) UC-NMC811和(d) ALD-NMC811電池選定循環中,恒壓保持(4.4 V,截止閾值 C/20)的電流隨時間變化曲線。

 

02  電壓滯后

 

微分容量曲線顯示,UC-NMC811 在循環后氧化/還原峰位移更顯著,ALD 涂層降低了過電位積累(圖 3a)。

 

03  阻抗分析

 

ALD-NMC811 的總阻抗(SEI 電阻+電荷轉移電阻)較 UC-NMC811 降低約 70 %(1.06Ω v.s 0.32Ω),證實涂層抑制了巖鹽相形成。

 

 

圖3(a) UC-NMC811 和(b) ALD-NMC811 電池在循環壽命測試中(FDC) 和(LDC) 之間的差分容量 d Q /d V與電壓曲線比較。(c)在不同充電電壓下測得的老化 UC-NMC811 和 ALD-NMC811 電池 EIS 數據的擬合圖。3.5、3.8 和 4.0 V 分別對應于約 20%、50% 和 80% 的充電狀態。Zr 和Zi 分別表示實部阻抗和虛部阻抗。

 

結構演化與疲勞抑制機制

 

01  原位 XRD 分析

 

晶格參數演化:ALD-NMC811在充電末端的晶格參數c塌縮更顯著,表明更高的脫鋰均勻性[圖4]。由于晶格參數c的崩塌程度反映了本體的脫鋰程度,因此ALD-NMC811 晶胞中c的下降幅度越大,表明脫鋰程度越高,因此充電容量也就越高。

 

圖4 (a) UC-NMC811 和 ALD-NMC811 電池的電壓隨時間變化曲線,(c) NMC811晶格參數a(正方形)和c(三角形)對應的相對變化。(b)兩個電池的電壓與時間曲線;(d) NMC811 電池體積變化。

 

圖5 UC-NMC811 和 (b) ALD-NMC811 袋式電池的 XRD 熱圖(顏色深淺表示不同晶面衍射峰的強度變化)和相應的電壓分布圖。

 

結構疲勞特征:UC-NMC811 在 4.4V 恒壓階段出現 003峰分裂(向低角度偏移,圖5),而ALD-NMC811 無明顯分裂,表明涂層抑制了體相結構疲勞[圖6b, 6e]。6(a)和6(d)表明,在老化的UC-NMC811電池中,需要更大的電流來維持 4.4V 的電壓。ALD 涂層正極在循環過程中的結構變化明顯小于未涂層正極,表明涂層能有效抑制結構疲勞。此外,ALD 涂層正極的電壓曲線更加穩定,表明其循環穩定性更好(圖5)。

 

02  石墨相變化

 

ALD-NMC811 在恒壓階段生成的 LiC? 相較少,反映其正極脫鋰動力學更優[圖6c, 6f]。兩種電池的 003 反射演變存在顯著差異。在 UC-NMC811 電池中,在充電步驟結束時,003 反射表現出強烈的不對稱性,在較低的散射角處出現寬肩特征,如圖所示。因此,UC-NMC811 正極存在明顯的疲勞。在 CV 過程中,隨著脫鋰的持續進行,該特征的強度降低,003 反射向更高的散射角移動,表明它確實與脫鋰有關,進而與疲勞有關。在 ALD-NMC811 電池中,這種 CV 過程中的偏移明顯較小;該電池在充電步驟中的脫鋰更加均勻,因此,更容易使該正極中的脫鋰狀態均質化。

 

圖6所示 (a)、(d)電流與時間曲線,(b)、(e)對應的NMC811 003峰和(c)、(f) 4.4 V CV步驟中(a) - (c) UC-NMC811和(d) - (f) ALD-NMC811電池的石墨Li化及峰演變。

 

關鍵機制

 

  • 表面保護:ALD 涂層減少氧損失,抑制巖鹽相重構,從而降低表面電阻。

  • 體相調控:涂層通過均勻化鋰離子分布,緩解脫鋰過程中的晶格應變,抑制疲勞相成核。

 

 

Part.4  討論與創新點

 

創新性

 

  • 體相-表面協同效應:通過原位 XRD 揭示ALD 涂層不僅保護表面,還通過改善鋰離子擴散動力學抑制體相結構疲勞。

  • 工業可擴展性:采用流化床 ALD 技術(如 Forge Nano Prometheus 系統)實現正極顆粒均勻包覆,適用于大規模生產。

 

Part.5結論與展望

 

通過電化學和原位X射線衍射研究 UC-NMC811-石墨和 ALD-NMC811-石墨全電池,結果表明,粉末原子層沉積(PALD)技術涂層是抑制這些正極在長期電化學循環中發生結構疲勞的有效方法。

 

ALD 涂層是通過在多晶 NMC811 顆粒上直接沉積納米級均勻的磷酸鋁層實現的。在經過 100 次恒流充放電循環(3-4.4 V)和在工業3.4 mA h/cm²的試產線袋式全電池(石墨負極)中大約 1 年的日歷老化后,發現 ALD 涂層正極電池的容量衰減明顯較小,阻抗增長也較慢。它們表現出結構的穩健性,并顯示出相對更好的鋰離子動力學指標。

 

對老化袋式電池的原位 XRD 研究表明,與 ALD 涂層正極相比,未涂層正極在充電末期表現出更高的結構疲勞程度。這在恒壓保持步驟期間通過 NMC811 和石墨相在充電末期的演變得到證明。因此,正極顆粒的 ALD 涂層是一種可工業擴展的方法,用于抑制富鎳層狀氧化物正極中的體相結構疲勞。這項工作表明,ALD 在抑制此類正極的高電壓表面降解方面的有益效果同樣轉化為長期循環過程中的體相穩定性。

 

型號推薦Forge Nano 粉末原子層沉積系統

 

 

PROMETHEUS XL 10(20)L流化床ALD 系統

Prometheus XL 流化床原子層沉積系統單次處理量達 1-20L(依粉末密度可達 10kg 以上),助力客戶快速實現從實驗室到工業化的工藝放大。大容量流化床反應器,結合振動與高剪切射流技術,解決粉末團聚難題,實現超均勻包覆。

 

 

PROMETHEUS 流化床ALD系統

利用 Prometheus 流化床原子層沉積系統可開發探索復雜的高比表面積粉末涂層,實現克級到公斤級粉末材料的界面涂層生長。批次處理能力提升至企業驗證需求的水平,可加快成果轉化速度。適合兼顧科學研究以及成果轉化的工藝開發需求,實現與企業小試要求的無縫銜接。

 

 

PANDORA 多功能ALD系統

Pandora 多功能原子層沉積系統使用操作簡單,兼容性強,適合在前期快速開展粉末包覆和平面樣品薄膜沉積的研究。同時,該系統能真正做到兼顧多種不同樣品的需求,可處理各種復雜樣品并做到 ALD 包覆。

 

了解更多原子層沉積技術以及 Forge Nano 產品詳情、應用案例與代包覆服務

 

 

 

原文文獻

【1】Pandey G C, Ans M, Capener M J, et al. Can Atomic Layer Deposition of Surface Coatings Suppress Structural Fatigue in Ni-Rich Lithium-Ion Battery Cathodes?[J]. PRX Energy, 2025, 4(1): 013009.

 

 

  • 聯系電話電話4008578882
  • 傳真傳真
  • 郵箱郵箱cici.yang@phenom-china.com
  • 地址公司地址上海市閔行區虹橋鎮申濱路88號上海虹橋麗寶廣場T5,705室
© 2025 版權所有:復納科學儀器(上海)有限公司   備案號:滬ICP備12015467號-5   sitemap.xml   管理登陸   技術支持:制藥網       
  • 公眾號二維碼




欧美成人高清电影在线| 亚洲图片欧美色图| 亚洲一区二区三区四区中文字幕| 懂色av一区二区三区免费看| 久久免费视频色| 激情综合亚洲精品| 久久亚洲私人国产精品va媚药| 久久av老司机精品网站导航| 精品国产99国产精品| 国产伦理精品不卡| 中文字幕乱码一区二区免费| 成人精品视频.| 亚洲乱码一区二区三区在线观看| 国产精品久久久久一区二区三区共| 成人黄页毛片网站| 中文字幕在线一区二区三区| 91免费国产在线| 中文字幕一区二区三区蜜月| 亚洲va国产va欧美va观看| 国产高清视频一区| 一区二区三区资源| 天堂va蜜桃一区二区三区 | 日韩一区日韩二区| 色噜噜狠狠一区二区三区果冻| 亚洲美女免费视频| 另类小说色综合网站| 久久久久亚洲蜜桃| 色综合天天综合色综合av| 午夜一区二区三区在线观看| 91麻豆精品国产无毒不卡在线观看 | 在线不卡中文字幕播放| 国产综合久久久久影院| 国产精品久久久久久久久动漫 | 26uuu久久天堂性欧美| 亚洲午夜三级在线| 日韩亚洲欧美在线| 国产精品一区二区久久不卡| 亚洲欧美另类综合偷拍| 欧美一级午夜免费电影| 亚洲三级电影网站| 69堂成人精品免费视频| 国产精品18久久久久| 亚洲乱码中文字幕| 精品日韩欧美一区二区| 91美女视频网站| 精品在线播放免费| 亚洲自拍偷拍九九九| 亚洲精品一区二区三区影院| 欧日韩精品视频| 丁香一区二区三区| 久草在线在线精品观看| 欧美日韩一二区| 亚洲图片有声小说| 在线成人小视频| 久久国产精品第一页| 国产精品久久久久久久久免费相片| 色噜噜狠狠成人中文综合| 久久精品国产77777蜜臀| 亚洲人成网站在线| 久久先锋影音av鲁色资源网| 欧美在线你懂的| 成人黄色a**站在线观看| 日韩avvvv在线播放| 中文字幕日本乱码精品影院| 日韩一级大片在线| 欧美四级电影在线观看| 粉嫩蜜臀av国产精品网站| 免费成人结看片| 亚洲无线码一区二区三区| 国产精品视频一二三区| 欧美va亚洲va| 91精品婷婷国产综合久久竹菊| 91色在线porny| 丁香激情综合五月| 狠狠色狠狠色合久久伊人| 日韩中文字幕不卡| 亚洲精品国产高清久久伦理二区| 久久久久久黄色| 精品国产三级电影在线观看| 欧美精品亚洲一区二区在线播放| 色哟哟一区二区| 99国产欧美另类久久久精品| 国内精品免费在线观看| 美美哒免费高清在线观看视频一区二区| 亚洲一二三四在线观看| 亚洲欧美日韩在线| 成人免费在线观看入口| 国产精品乱码人人做人人爱| 久久久精品国产免费观看同学| 日韩欧美一级特黄在线播放| 337p亚洲精品色噜噜噜| 欧美丰满少妇xxxbbb| 欧美日韩不卡一区| 欧美日韩免费在线视频| 欧美日韩精品一区二区三区| 色噜噜狠狠成人中文综合| 在线免费观看视频一区| 91久久精品日日躁夜夜躁欧美| 99re在线精品| 色www精品视频在线观看| 色成年激情久久综合| 91久久精品日日躁夜夜躁欧美| 91在线视频播放| 日本高清不卡aⅴ免费网站| 色婷婷久久一区二区三区麻豆| 99国产精品国产精品毛片| 99在线热播精品免费| 色综合久久久久网| 欧美亚洲另类激情小说| 欧美精品乱码久久久久久 | 亚洲综合在线观看视频| 欧美日韩国产一区二区三区地区| 色婷婷av一区二区三区软件| 一本在线高清不卡dvd| 在线视频欧美精品| 欧美一区日韩一区| 久久综合久久综合九色| 久久亚洲一级片| 国产精品剧情在线亚洲| 亚洲美女视频在线观看| 亚洲国产精品久久不卡毛片| 蜜臀精品一区二区三区在线观看| 精彩视频一区二区| eeuss鲁一区二区三区| 欧美四级电影网| 精品国产一区二区三区av性色| 欧美激情综合五月色丁香| 综合激情成人伊人| 舔着乳尖日韩一区| 成人自拍视频在线观看| 一本一本久久a久久精品综合麻豆 一本一道波多野结衣一区二区 | 日韩精品在线一区| 国产欧美视频在线观看| 亚洲视频综合在线| 欧美成人艳星乳罩| 国产精品欧美久久久久无广告| 亚洲精品中文字幕在线观看| 日韩高清不卡在线| 成人av网站免费观看| 欧美日韩电影一区| 国产偷国产偷亚洲高清人白洁 | 精品一区免费av| 99re6这里只有精品视频在线观看| 欧美中文字幕亚洲一区二区va在线| 日韩欧美国产综合在线一区二区三区| 国产日韩亚洲欧美综合| 亚洲一区二区三区免费视频| 狠狠狠色丁香婷婷综合激情| 色婷婷综合久色| 精品国产不卡一区二区三区| 亚洲欧美激情插| 国产在线精品一区二区夜色| 色偷偷成人一区二区三区91| 久久久噜噜噜久久中文字幕色伊伊| 亚洲免费伊人电影| 国产一区二区三区综合| 欧美日韩国产影片| 亚洲免费在线电影| 成人永久免费视频| 精品乱码亚洲一区二区不卡| 亚洲激情五月婷婷| 国产不卡在线播放| 日韩一区二区三区高清免费看看| 国产精品成人午夜| 国产自产2019最新不卡| 欧美日韩一区二区在线视频| 国产精品乱码妇女bbbb| 久久精品国产77777蜜臀| 欧洲一区二区av| 日本一区二区三区在线不卡| 日本亚洲天堂网| 欧美午夜片在线观看| 国产精品毛片a∨一区二区三区| 久久精品理论片| 欧美日韩国产影片| 一区二区三区四区亚洲| 成人h动漫精品一区二区| 亚洲精品一区在线观看| 日本美女一区二区| 丰满放荡岳乱妇91ww| 精品国产乱码久久久久久浪潮| 日韩高清一级片| 欧美人xxxx| 午夜精品一区二区三区三上悠亚| 色婷婷精品大视频在线蜜桃视频| 国产精品国产精品国产专区不蜜 | 欧美午夜一区二区| 亚洲综合图片区| 日本黄色一区二区| 亚洲精品国产品国语在线app| 99re热视频这里只精品 | 777色狠狠一区二区三区| 亚洲午夜一区二区| 欧美日韩中文字幕一区二区| 亚洲一区成人在线| 欧美日韩aaa| 日韩电影在线观看一区| 4hu四虎永久在线影院成人| 天堂资源在线中文精品| 欧美一级高清片在线观看|